
CISC462, Fall 2018, Decidability and undecidability 1

DECIDABILITY AND UNDECIDABILITY

Decidable problems from language theory

For simple machine models, such as finite automata or pushdown automata, many decision

problems are solvable. In the case of deterministic finite automata, problems like equivalence

can be solved even in polynomial time. Also there are efficient parsing algorithms for context-

free grammars.

If necessary we may briefly review some material on regular and context-free languages

from chapters 1 and 2 in the textbook. Recall in particular the following important charac-

terization:

Regular languages = languages denoted by regular expressions

= languages accepted by DFAs (deterministic finite automata)

= languages accepted by NFAs (nondeterministic finite automata).

The class of regular languages is strictly contained in the deterministic context-free lan-

guages (DCFL) which in turn are strictly contained in the (general) context-free languages.

The class DCFL consists of languages recognized by deterministic pushdown automata.

We recall the following basic notions. A decision problem is a restricted type of an

algorithmic problem where for each input there are only two possible outputs.

• A decision problem is a function that associates with each input instance of the problem

a truth value true or false.

• A decision algorithm is an algorithm that computes the correct truth value for each

input instance of a decision problem. The algorithm has to terminate on all inputs!

• A decision problem is decidable if there exists a decision algorithm for it. Otherwise it

is undecidable.

CISC462, Fall 2018, Decidability and undecidability 2

regular
languages

languages accepted by
deterministic PDAs

context-free
languages

Figure 1: Regular, context-free and deterministic context-free languages

To show that a decision problem is decidable it is sufficient to give an algorithm for it.

On the other hand, how could we possibly establish (= prove) that some decision problem

is undecidable? This is one of the questions we will address in the course.

Decidability properties of regular languages

Important decision problems for finite automata include the following:

1. DFA membership

INSTANCE: A DFA M = (Q,Σ, δ, q0, F) and a string w ∈ Σ∗

QUESTION: Is w ∈ L(M)?

Proposition. DFA membership is decidable.

Proof. To be explained in class: the algorithm simulates the given DFA on the given

input.

2. DFA emptiness.

CISC462, Fall 2018, Decidability and undecidability 3

INSTANCE: A DFA M = (Q,Σ, δ, q0, F)

QUESTION: Is L(M) = ∅?

Theorem. DFA emptiness is decidable.

Proof. We note that L(M) = ∅ iff there is no path in the state diagram of M from

q0 to a final state. If F = ∅, then clearly L(M) = ∅. Otherwise, we use a graph

reachability algorithm to enumerate all states that can be reached from q0 and check

whether this set contains some state of F . The algorithm terminates because the state

diagram is finite.

(This result is explained in Ch. 4 of the textbook.)

3. DFA universality

INSTANCE: A DFA M = (Q,Σ, δ, q0, F)

QUESTION: Is L(M) = Σ∗?

Theorem. DFA universality is decidable.

Proof: in class

4. DFA containment

INSTANCE: Two DFAs M1 = (Q1,Σ, δ1, q1, F1) and M = (Q2,Σ, δ2, q2, F2)

QUESTION: Is L(M1) ⊆ L(M2)?

Theorem. DFA containment is decidable.

Proof hint: using closure properties of regular languages reduce the question to checking

emptiness.

5. DFA equivalence

INSTANCE: Two DFAs M1 = (Q1,Σ, δ1, q1, F1) and M = (Q2,Σ, δ2, q2, F2)

CISC462, Fall 2018, Decidability and undecidability 4

QUESTION: Is L(M1) = L(M2)?

Theorem. DFA equivalence is decidable.

Proof hint: reduce the question to checking containment (see section 4.1).

Regular languages are useful for many practical applications due to the fact that “all

natural” questions concerning regular languages are decidable.1 The downside is that the

family of regular languages is quite small.

As we will see, already for context-free languages some of the above questions are unde-

cidable (universality, containment, equivalence).

For languages accepted by general Turing machines, as we will shortly find out, all non-

trivial questions are undecidable!

Also the corresponding decision problems for context-free grammars are discussed in

section 4.1.

Context-free membership ACFG

INSTANCE: A CF grammar G = (V,Σ, R, S) and a string w ∈ Σ∗.

QUESTION: Is w ∈ L(G)?

Formally, ACFG is defined to be the language consisting of all encodings2 of a pair con-

sisting of a CFG and some string generated by the grammar:

ACFG = {< G,w >| G is a CFG and w ∈ L(G)}

Theorem. ACFG is decidable.

1There are known exceptions, but these are somewhat “artificial” problems.
2Inputs to TMs must be encoded as strings. The notation for the encoding is explained at the end of

chapter 3 in the textbook.

CISC462, Fall 2018, Decidability and undecidability 5

Note: In the context of computability theory, to show that ACFG is decidable it is sufficient

to use a simple brute-force parsing algorithm. Context-free grammars can be parsed effi-

ciently and the best known parsing algorithms for general context-free grammars have time

complexity (slightly less than) O(n3).

Similarly, the context-free emptiness problem is encoded as a language:

ECFG = {< G >| G is a CFG and L(G) = ∅}

Theorem. ECFG is decidable.

Proof. In class.

Also, we can consider the equivalence problem for context-free languages. Formally this

can be encoded as the language

EQCFG = {< G,H >| G,H are CFGs and L(G) = L(H)}

Recall that we have an algorithm that decides equivalence of DFAs or NFAs. However,

the same approach that was used to establish the decidability result for DFAs does not work

if we try to show that EQCFG is decidable. Why not?

In fact, it turns out that EQCFG is not decidable, that is, the equivalence problem for

context-free grammars is undecidable! We will come back to this later3.

Undecidable problems

We will now discuss the notion of undecidability. This is section 4.2 in the textbook. First

let us review some terminology.

3The above observations that our previous method cannot be used to establish decidability still in no

way guarantee that the question is undecidable.

CISC462, Fall 2018, Decidability and undecidability 6

noyes

yesyes

w

w

 w
input

M’

M
N

Figure 2: A decider for the language L.

• A language is decidable if some TM decides it (chapter 3). All computations of a

decider TM must halt. Decidable languages are often called also recursive languages.

• A language is Turing-recognizable (or recursively enumerable) if it is recognized by a

TM. That is, all words in the language are accepted by the TM. On words not belonging

to the language, the computation of the TM either rejects or goes on forever.

Lemma. A language L is decidable if and only if L̄ is decidable.

Proof: in class

Theorem. L is decidable if and only if both L and L̄ are Turing-recognizable.

Proof. (only if): Follows from the previous lemma and the fact that every decidable

language is Turing-recognizable.

(if): Let M be a TM recognizing L and M ′ a TM recognizing L̄. We construct a decider N

for the language L, see Figure 2.

The decider N can be implemented as a 2-tape TM that on its first tape simulates

M and “in parallel” on the second tape simulates M ′. If the simulation on tape one ac-

CISC462, Fall 2018, Decidability and undecidability 7

cepts, N accepts. If the simulation on tape two accepts, N rejects. One of the simulations

necessarily halts in a finite number of steps. (Why?)

The standard example of an undecidable language is:

LTMaccept = {< M,w >| M is a TM and M accepts w}

Theorem. LTMaccept is undecidable.

The proof (to be gone through in class) shows that, in fact, the more restricted language

Lselfaccept = {< M,< M >>| M is a TM }

is undecidable. The crucial idea is diagonalization.

Universal Turing machines

General purpose computers operate as follows:

IBM

program

input

output

Figure 3: Programmable computer

Similarly, can view a universal Turing-machine to be “programmable”:

< M >: encoding of TM M ;

< x >: encoding of input x to M ;

< y >: encoding of output produced by M .

CISC462, Fall 2018, Decidability and undecidability 8

Universal
Turing machine

<M>

<x>

<y>

Figure 4: “Programmable” (universal) Turing-machine

The proof of the existence of universal TMs is constructive.

Outline of the proof:

• We use three tapes:

w blanks

blank tape

blank tape

Figure 5: The configuration at the beginning, here w =< M,x >.

• Steps:

1. Check the validity of the input (correct encoding of a TM M and an input x for

M).

2. Copy from the input tape the string x to the second tape.

3. Write the start state of M onto third tape.

4. Start the simulation, see Figure 6.

CISC462, Fall 2018, Decidability and undecidability 9

current state of M
Stores encoding of

(current contents of the tape of M)
Simulation tape

function of M
Encoding of transition

blanks

blanks

blanks

<q0>

<x>

<M>

Figure 6: The contents of the tapes after steps 1., 2., 3. After this the universal machine is

ready to begin the simulation of M .

Note:

• A universal TM has a fixed tape alphabet.

• Different TMs have different state sets and tape alphabets, and these may be arbitrarily

large finite sets.

Consequently the TMs given as input for a universal TM must be encoded using a

fixed alphabet. The encoding must include the state set, tape alphabet and transition func-

tion. This is illustrated in the below example.

Example.

The TM of Figure 7 could be first encoded as a string:

[δ(0, a) = (1, b, R); δ(1, b) = (0, b, R); δ(1,⊔) = (2,⊔, L); 1s; 2acc]

Above “1s” would denote that “1” is the start state and “2acc” denotes that “2” is the

accept state.

The above string could then straightforwardly be encoded using a binary alphabet. In

this way, any Turing machine can be encoded as a string over the binary alphabet.

CISC462, Fall 2018, Decidability and undecidability 10

⊔ → ⊔, L

b → b, R

a → b, R

210
- -

&%
'$
"!

&%
'$

&%
'$

6& %

?

$#

Figure 7: An example of a Turing machine.

• There exist fairly small universal TMs. For example, we can construct a universal TM

that has 7 states and the tape alphabet has 4 symbols.

• There do not exist “universal DFAs”, that is, DFAs that could simulate any other

DFA. Why not?

The language

LTMaccept = {< M,w >| M is a TM and M accepts w}

is recognized by a universal TM!

• This shows that there exist Turing-recognizable languages that are not decidable.

• On the other hand, the complement of LTMaccept is not Turing-recognizable. Why not?

Post Correspondence Problem (PCP)

INPUT: {
[

t1
b1

]

,
[

t2
b2

]

, . . . ,
[

tk
bk

]

}

PROBLEM: Is there i1, i2, . . . , im such that ti1ti2 . . . tim = bi1bi2 . . . bim?

t1, t2, . . . , tk, b1, b2, . . . , bk are strings over some alphabet Σ.

A solution, if it exists, is called a match.

1

PCP - example

For the collection of dominos below:
[

ab

aba

]

,

[

ba

abb

]

,

[

b

ab

]

,

[

abb

b

]

,

[

a

bab

]

here is a match:
[

ab

aba

]

[

a

bab

]

[

ba

abb

] [

b

ab

] [

abb

b

] [

abb

b

] [

b

ab

] [

abb

b

]

For the collection of dominos below:
[

ab

aba

]

,

[

ba

abb

]

,

[

b

ab

]

there is no match.

2

Modified Post Correspondence Problem (MPCP)

Require that the match start with the first domino.

INPUT: {
[

t1
b1

]

,
[

t2
b2

]

, . . . ,
[

tk
bk

]

}

PROBLEM: Is there i2, . . . , im such that t1ti2 . . . tim = b1bi2 . . . bim?

t1, t2, . . . , tk, b1, b2, . . . , bk are strings over some alphabet Σ.

3

Reduction from MPCP to PCP

Let u = u1u2 . . . un be a string. Define

∗u = ∗ u1 ∗ u2 ∗ . . . ∗ un.

u ∗ = u1 ∗ u2 ∗ . . . ∗ un∗.

∗u ∗ = ∗ u1 ∗ u2 ∗ . . . ∗ un∗.

Given the collection of dominos:

{
[

t1

b1

]

,

[

t2

b2

]

, . . . ,

[

tk

bk

]

}

output the collection of dominos:

{
[

∗t1
∗b1∗

]

,

[

∗t1
b1∗

]

,

[

∗t2
b2∗

]

, . . . ,

[

∗tk
bk∗

]

,

[

∗⋄

⋄

]

}.

4

Reduction from ATM to MPCP

Given M = (Q, Σ, Γ, δ, qs, qacc, qrej) and w = w1w2 . . . wn a reduction machine constructs dominos as

described below:

1.
[

#

#qsw1w2...wn#

]

.

2. For all a, b ∈ Γ, for all q, r ∈ Q so that q 6= qrej:

If δ(q, a) = (r, b, R) add dominos
[

qa

br

]

.

3. For all a, b, c ∈ Γ, for all q, r ∈ Q so that q 6= qrej:

If δ(q, a) = (r, b, L) add dominos
[

cqa

rcb

]

.

4. For all a ∈ Γ, add dominos
[

a
a

]

.

5. Add dominos
[

#

#

]

and
[

#

⊔#

]

.

6. For all a ∈ Γ, add dominos
[

aqacc

qacc

]

and
[

qacca

qacc

]

.

7. Add domino
[

qacc##

#

]

5

Correctness

• Any solution must begin with
[

#

#qsw1w2...wn#

]

.

• qacc is not in the dominos: bottom string longer than top string.

• Growing the top part makes the bottom part represent the next configuration:

α#

α#x#
−→

α#x#

α#x#y#

(y is the configuration next to x.)

• If M does not accept w, qacc never appears in the bottom.

The lengths are always different and hence no match.

6

Programming and Data Structures 1

Tractable & Intractable Problems

• We will be looking at :
– What is a P and NP problem

– NP-Completeness

– The question of whether P=NP

– The Traveling Salesman problem again

Programming and Data Structures 2

Polynomial Time (P)
• Most of the algorithms we have looked at so far have been

polynomial-time algorithms

• On inputs of size n, their worst-case running time is O(nk) for some
constant k

• The question is asked can all problems be solved in polynomial time?

• From what we’ve covered to date the answer is obviously no. There
are many examples of problems that cannot be solved by any computer
no matter how much time is involved

• There are also problems that can be solved, but not in time O(nk) for
any constant k

Programming and Data Structures 3

Non-Polynomial Time (NP)
• Another class of problems are called NP problems

• These are problems that we have yet to find efficient algorithms in
Polynomial Time for, but given a solution we can verify that solution
in polynomial time

• Can these problems be solved in polynomial time?

• It has not been proved if these problems can be solved in polynomial
time, or if they would require superpolynomial time

• This so-called P != NP question is one which is widely researched and
has yet to be settled

Programming and Data Structures 4

Tractable and Intractable
• Generally we think of problems that are solvable by polynomial time

algorithms as being tractable, and problems that require superpolynomial
time as being intractable.

• Sometimes the line between what is an ‘easy’ problem and what is a
‘hard’ problem is a fine one.

• For example, “Find the shortest path from vertex x to vertex y in a given
weighted graph”. This can be solved efficiently without much difficulty.

• However, if we ask for the longest path (without cycles) from x to y, we
have a problem for which no one knows a solution better than an
exhaustive search

Programming and Data Structures 5

Deterministic v Non-Deterministic
• Let us now define some terms

– P: The set of all problems that can be solved by deterministic
algorithms in polynomial time

• By deterministic we mean that at any time during the operation of the
algorithm, there is only one thing that it can do next

• A nondeterministic algorithm, when faced with a choice of several
options, has the power to “guess“ the right one.

• Using this idea we can define NP problems as,
– NP:The set of all problems that can be solved by nondeterministic

algorithms in polynomial time.

Programming and Data Structures 6

Is P = NP?
• Obviously, any problem in P is also in NP, but not the other way around

• To show that a problem is in NP, we need only find a polynomial-time
algorithm to check that a given solution (the guessed solution) is valid.

• But the idea of nondeterminism seems silly. A problem is in NP if we can
‘guess’ a solution and verify it in polynomial time!!

• No one has yet been able to find a problem that can be proven to be in NP
but not in P

• Is the set P = NP? We don’t know. If it is, then there are many efficient
algorithms out there just waiting to be discovered.

• Most researchers believe that P != NP, but a proof remains to be shown

Programming and Data Structures 7

NP-Completeness
• NP-complete problems are set of problems that have been provedto be

in NP

• That is, a nondeterministic solution is quite trivial, and yet no
polynomial time algorithm has yet been developed.

• This set of problems has an additional property which does seem to
indicate that P = NP

• If any of the problems can be solved in polynomial time on a
deterministic machine, then all the problems can be solved in NP(Cook's
Theorem)

• It turns out that many interesting practical problems have this
characteristic

Programming and Data Structures 8

Examples of NP-Complete
• Travelling Salesman Problem: Given a set of cities and distances

between all pairs, find a tour of all the cities of distance less than M.

• Hamiltonian Cycle: Given a graph, find a simple cycle that includes
all the vertices.

• Partition: Given a set of integers, can they be divided into two sets
whose sum is equal?

• Integer Linear Programming: Given a linear program is there an
integer solution?

• Vertex Cover: Given a graph and an integer N, is there a set of fewer
than N vertices which touches all the edges?

Programming and Data Structures 9

Solving These Problems

• At present no algorithms exist that are guaranteed to solve any of the NP-
complete problems efficiently

• Remember if we could find one then we could solve all the NP-Complete
problems

• In the meantime can we find ‘adequate’ solutions?

• One approach is to seek an approximate solution which may not be the
optimal but is close to the optimal

• Another approach is to focus on the average case and develop an
algorithm that works for most, but not all, cases

Programming and Data Structures 10

Approximation Algorithms
• Here is an approximation algorithm for the travelling

salesman problem,

Approx-TSP-Tour(G, c)
- select a vertex r ∈ V[G] to be a “root” vertex
- grow a minimum spanning tree T for G from root r using MST-Prim(G,c,r)
- Let L be the list of vertices visited in a preorder tree walk of T
- return the Hamiltonian cycle H that visits the vertices in the order L

endalg

• This approximation if implemented correctly returns a tour
whose cost is not more than twice the cost of an optimal
tour

Programming and Data Structures 11

TSP Example
a

f
c

h

b

d

g
e

a

f
c

h

b

d

g
e

a

f
c

h

b

d

g
e

a

f
c

h

b

d

g
e

a

f
c

h

b

d

g
e

b. MST

c.Preorder d. Tour by preorder

e. Optimum Tour

a. Given points

Programming and Data Structures 12

Summary
• Polynomial problems are problems for which algorithms can be found

that solve the problem in polynomial time

• Non deterministic Polynomial problems are problems for which non-
deterministic algorithms can be found

• NP-Complete problems are problems that are in NP, but which have the
added property that if one can be solved, they all can be solved

• It is thought that NP-Complete problems may be insoluble using
deterministic methods

• One approach is to develop approximation algorithm, as we did with TSP

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 1 of 10

Back

Full Screen

Close

Quit

Lecture 29:

Tractable and Intractable Problems

Aims:

• To look at the ideas of

– polynomial and exponential functions and algorithms; and

– tractable and intractable problems.

• To look at ways of solving intractable problems.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 2 of 10

Back

Full Screen

Close

Quit

29.1. Tractable and Intractable Problems

• Let’s start by reminding ourselves of some common functions, ordered by how fast
they grow.

constant O(1)
logarithmic O(log n)
linear O(n)
n-log-n O(n × log n)
quadratic O(n2)
cubic O(n3)
exponential O(kn), e.g. O(2n)
factorial O(n!)
super-exponential e.g. O(nn)

• Computer Scientists divide these functions into two classes:

Polynomial functions: Any function that is O(nk), i.e. bounded from above by nk

for some constant k.

E.g. O(1), O(log n), O(n), O(n × log n), O(n2), O(n3)

This is really a different definition of the word ‘polynomial’ from the one we had
in a previous lecture. Previously, we defined ‘polynomial’ to be any function of
the form aknk + ak−1n

k−1 + . . . + a1n + a0.

But here the word ‘polynomial’ is used to lump together functions that are
bounded from above by polynomials. So, log n and n × log n, which are not
polynomials in our original sense, are polynomials by our alternative definition,
because they are bounded from above by, e.g., n and n2 respectively.

Exponential functions: The remaining functions.

E.g. O(2n), O(n!), O(nn)

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 3 of 10

Back

Full Screen

Close

Quit

This is a real abuse of terminology. A function of the form kn is genuinely
exponential. But now some functions which are worse than polynomial but
not quite exponential, such as O(nlog n), are also (incorrectly) called exponen-
tial. And some functions which are worse than exponential, such as the super-
exponentials, e.g. O(nn), will also (incorrectly) be called exponential. A better
word than ‘exponential’ would be ‘super-polynomial’. But ‘exponential’ is what
everyone uses, so it’s what we’ll use.

• Why have we lumped functions together into these two broad classes? The next two
tables and the graph attempt to show you why.

10 50 100 300 1000

5n 50 250 500 1500 5000

n× 33 282 665 2469 9966
log n

n2 100 2500 10000 90000 1 million
(7 digits)

n3 1000 125000 1 million 27 million 1 billion
(7 digits) (8 digits) (10 digits)

2n 1024 a 16-digit a 31-digit a 91-digit a 302-digit
number number number number

n! 3.6 million a 65-digit a 161-digit a 623-digit unimaginably
(7 digits) number number number large

nn 10 billion an 85-digit a 201-digit a 744-digit unimaginably
(11 digits) number number number large

(The number of protons in the known universe has 79 digits.)
(The number of microseconds since the Big Bang has 24 digits.)

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 4 of 10

Back

Full Screen

Close

Quit

10E40

10E35

10E30

10E25

10E20

10E15

a trillion

a billion

a million

1000

2 4 8 16 32 64 128 256 512 1024

2^nn^n

n^3

5n

n^5

(Note that this graph has logarithmic axes.)

• On the basis of this classification of functions into polynomial and exponential, we
can classify algorithms:

Polynomial-Time Algorithm: an algorithm whose order-of-magnitude time per-
formance is bounded from above by a polynomial function of n, where n is the
size of its inputs.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 5 of 10

Back

Full Screen

Close

Quit

Exponential Algorithm: an algorithm whose order-of-magnitude time performance
is not bounded from above by a polynomial function of n.

• Why do we divide algorithms into these two broad classes? The next table, which
assumes that one instruction can be executed every microsecond, attempt to show
you why.

10 20 50 100 300

n2 1
10000

1
2500

1
400

1
100

9
100

second second second second second
n5 1

10
3.2 5.2 2.8 28.1

second seconds minutes hours days

2n 1
1000

1 35.7 400 trillion a 75-digit number
second second years centuries of centuries

nn 2.8 3.3 trillion a 70-digit number a 185-digit number a 728-digit number
hours years of centuries of centuries of centuries

(The Big Bang was approximately 15 billion years ago.)

• And, in a similar way, we can classify problems into two broad classes:

Tractable Problem: a problem that is solvable by a polynomial-time algorithm.
The upper bound is polynomial.

Intractable Problem: a problem that cannot be solved by a polynomial-time al-
gorithm. The lower bound is exponential.

• Here are examples of tractable problems (ones with known polynomial-time algo-
rithms):

– Searching an unordered list

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 6 of 10

Back

Full Screen

Close

Quit

– Searching an ordered list

– Sorting a list

– Multiplication of integers (even though there’s a gap)

– Finding a minimum spanning tree in a graph (even though there’s a gap)

• Here are examples of intractable problems (ones that have been proven to have no
polynomial-time algorithm).

– Some of them require a non-polynomial amount of output, so they clearly will
take a non-polynomial amount of time, e.g.:

∗ Towers of Hanoi: we can prove that any algorithm that solves this problem
must have a worst-case running time that is at least 2n

− 1.

∗ List all permutations (all possible orderings) of n numbers.

– Others have polynomial amounts of output, but still cannot be solved in poly-
nomial time:

∗ For an n × n draughts board with an arrangement of pieces, determine
whether there is a winning strategy for White (i.e. a sequence of moves so
that, no matter what Black does, White is guaranteed to win). We can
prove that any algorithm that solves this problem must have a worst-case
running time that is at least 2n.

• So you might think that problems can be neatly divided into these two classes. But
this ignores ‘gaps’ between lower and upper bounds. Incredibly, there are problems
for which the state of our knowledge is such that the gap spans this coarse division
into tractable and intractable. So, in fact, there are three broad classes of problems:

– Problems with known polynomial-time algorithms.

– Problems that are provably intractable (proven to have no polynomial-time
algorithm).

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 7 of 10

Back

Full Screen

Close

Quit

– Problems with no known polynomial-time algorithm but not yet proven to be
intractable.

We’ll see some examples of the third category (as well as further examples of the first
two categories) in the next lecture.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 8 of 10

Back

Full Screen

Close

Quit

29.2. Solving Intractable Problems

• None of this would matter much if the problems for which we do not have polynomial-
time algorithms were theoretical curiosities. Unfortunately, this is not the case. Many
real-world problems fall into this category. Unless your inputs are going to be very
small, you cannot simply use the known algorithms.

• So what do you do if your problem

– is provably intractable (proven to have no polynomial-time algorithm), or

– has no known polynomial-time algorithm even if it is not yet proven intractable?

• Here are the main possibilities:

– Seek to obtain as much improvement as possible and live hopefully! For exam-
ple, our backtracking solution to n-Queens was probably better than our first
solution. Eliminating symmetry in the problem may help further. Incorporating
rules-of-thumb (‘heuristics’) to dynamically decide what to try next may also
help. All of these ideas try to make the algorithm work well in practice, on
typical instances, while acknowledging that exponential cases are still possible.

– Solve simpler/restricted versions of the problem. Maybe a solution to a slight
variant of the problem would still be useful to you, while possibly avoiding
exponential complexity.

– Use a polynomial-time probabilistic algorithm: one which gives the right answer
only with very high probability. So you are giving up on program correctness,
in the interests of speed.

– For optimisation problems, use a polynomial-time approximation algorithm: one
which is not guaranteed to find the best answer.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 9 of 10

Back

Full Screen

Close

Quit

Acknowledgements:

The tables and graphs come from [Har92].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html

Tractable and . . .

Solving Intractable . . .

Module Home Page

Title Page

◭◭ ◮◮

◭ ◮

Page 10 of 10

Back

Full Screen

Close

Quit

References

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Tractable and Intractable Problems
	Solving Intractable Problems

